Exploring Student Behaviors and Motivations when
using Al Teaching Assistants with Optional Guardrails

Amanpreet Kapoor?, Paul Denny?, Leo Porter3, Stephen MacNeil4, Marc Diaz?!
University of Florida?, University of Auckland? University of California San Diego3, Temple University*

paul@cs.auckland.ac.nz

Motivation

Yoy
Resi Chin r~
SSistant

Source: Gemini Source: Gemini
Providing timely and consistent human Solution: Al TA’s backed by large language
feedback in large introductory programming models (LLMs)

courses does not scale!

Recent Work on Al TAs: Benefits

generate correct and helpful responses

(Denny et al., Desirable Characteristics for Al Teaching
Assistants in Programming Education, ACM ITiCSE 2024)

provide students with a personal tutor
ba C ked d (Liu et al., Teaching CS50 with Al: Leveraging Generative Artificial

AI TAS Intelligence in Computer Science Education, ACM SIGCSE 2024)

timely and tailored feedback

(Liffiton et al., CodeHelp: Using Large Language Models with Guardrails
for Scalable Support in Programming Classes., ACM Koli Calling 2023)

Recent Work on Al TAs: Drawbacks

student over-reliance leading to underdeveloped skills

(Prather et al., The Widening Gap: The Benefits and Harms of Generative Al for
Novice Programmers, ACM ICER 2024)

LLM-
backed

academic misconduct

(Sheard et al., Instructor Perceptions of Al Code Generation Tools - A Multi-Institutional
Interview Study., ACM SIGCSE 2024)

Al TAs

inaccuracies in the Al-generated content

(Denny et al., Computing Education in the Era of Generative Al, ACM CACM 2024)

Recent Work on Al TAs: Adding Guardrails

{Q} CodeHelp

Code:

Error:

Issue /
Question:

CodeHelp's
Response:

def character_remover(word, character):
word = word.remove(character)
return word

Attribute Error

I want this function to print the word, excluding the character.

The error message you are seeing is an Attribute Error, which means that the object
you are trying to access does not have the attribute or method you are trying to use.
In this case, the object is the string word and the attribute you are trying to use is

remove() . The remove() method is not a valid method for strings, so you are
getting this error.

You can use the replace() method instead. This method takes two parameters: the
substring you want to replace and the substring you want to replace it with. In this
case, you want to replace the character with an empty string. To do this, you can pass
an empty string as the second parameter to the replace() method. This will remove
the character from the string.

For example, if you have a string word = ‘Hello® and a character character = '1',

you can remove the character from the string by calling word.replace(character,
"y . This will return a new string with the character removed, 'Heo’

(Liffiton et al., CodeHelp: Using Large Language Models with Guardrails
for Scalable Support in Programming Classes., ACM Koli Calling 2023)

CodeAid

Code to ask about: Question from code:

F1bl n what is xheap_pt pointing to in the
11 array?

® ask question
@ ask question from code

heap_pt[1 1; Q explain code B
} { X help fix code (o>]

heap_ptl[i] = _ptl[i-1] + heap_pt[i-2]; help write code

(Kazemitabaar et al., CodeAid: Evaluating a Classroom Deployment of an
LLM-based Programming Assistant that Balances Student and Educator
Needs, ACM CHI 2024)

Recent Work on Al TAs: Adding Guardrails

Source: Gemini

Problem: Overly Restrictive Guardrails can
promote general LLM applications

Al TA Chatbots vs General LLMs

Pedagogical
Guardrails that
support learning

N

Flexible but can
hinder learning

Observable and »
Actionable Q
Interactions

Broader but lost
Interactions

S0

Closed D%‘_ﬂ Open
Environment -7~ Environment

Al TA Chatbots, e.g.,
Codehelp, Codeaid, etc.

General LLM apps, e.g.,
ChatGPT, Gemini,
Claude Code, etc.

Source: Napkin.ai

General LLMs can lose learning interactions and
impede learning or promote over-reliance

Study Context

Observational study
Fall 2024

Introductory programming course
Taught by Prof. Paul Denny @ University of Auckland
12-weeks semester, # students=1,034,
Corpus for analysis, N=885

K (KA
Lab 9 (C Language)

- 1 out of 10 marks (0.1% of course grade)

- One code writing + Two code debugging tasks
- Two guantitative + Two qualitative questions
- Ran over nine days

Study Context: Tool —- Edugator

Problem Statement Navigation Code Editor
The problem is described with guidance about the chatbot Students can navigate between problems Students’ code is “seen” by chatbot

Problem l Submission History Chat Solution prime. . & 9

rs .. depinttor oty o -

1 int isPrime(int value

I'______________ _____________________ 1 5 |

| To be or not to be Prime 1] e ’ |

I I I eturn @; I

I Author: Amanpreet Kapoor Easy I | |

I I |

: For this task, you will explore the feedback generated by the LLM-TA-Chatbet if it is asked to write : : :

| code. On the right (in your code editor) is a short (incomplete) code snippet for a function that | | I

| would test whether or not a number is a prime number (i.e., a positive integer which has exactly | | |

i L]

I two distinct divisors: 1and itself). Ite—_——,——-————— - -

| lr.m——————-—-—-—-—————_—_—_—_—————————————— == 1

: You should begin a conversation in natural language with the LLM-TA-Chatbot by asking it to write : : Run Code Subrmrit Code :

| the code for this function. You are welcome to use the feedback from the LLM-TA-Chatbot tO help | 1 L “ |

| vou solve this programming task. Once you are done, please submit your solution in the code | | Teati)] comiest |

. i I spmisstan click to view tests

| editor on the right and press the Submit button. I | I
b o e e e e e e e o — — — — — — —— — — — — — — — — — — — —— —— |

I o Score: 50% (3/6 p |

[0 Have feedback or found a bug? Let us know K I :

I INPUT OUTPUT EXPECTED RESULT I

| |

| 2 not wumbe 2 i a I ® |

Test Cases @---| |

Test Cases are run when “Submit Code” is clicked | 5 RS a orime numbt is 8 ® |

Y - —— — — — — — —— — —— - |

Interface for Edugator Tool, https://edugator.app/

https://edugator.app/

Study Context: Tool Edugator

Modules

Problem

To be or not to be Prime e E—

Exams

For this task, you will explore the feedback generated by the LLM-TA-Chatbot if it is asked to
write code. On the right (in your code editor) is a short (incomplete) code snippet for a function
that would test whether or not a number is a prime number (i.e., a positive integer which has
exactly two distinct divisors: 1 and itself).

You should begin a conversation in natural language with the LLM-TA-Chatbot by asking it to Run Code
write the code for this function. You are welcome to use the feedback from the LLM-TA-Chatbot

to help you solve this programming task. Once you are done, please submit your solution in the

Testing Stdin itput N Hide
code editor on the right and press the Submit button.

Testing solution and Al chat interface in Edugator to ask questions and solicit solutions

Study Context: Tool Implementation

Implementation of Al TA Chatbot

Al TA with Guardrails: using Prompt (GPT40) ‘See Solution’: no Guardrails (GPT40)
“Respond to the student with a brief educational explanation, “Your goal is to provide a detailed,
helping the student figure out the issue and understand what educational explanation of the problem,
they’re doing incorrectly. If the student inputs include an error including the correct code structure and
message, tell the student what it means, giving a detailed logic. Your responses should be concise,
explanation to help the student understand the message. [...]. clear, and easy to understand. Ensure that
Be positive and encouraging, and keep it conversational, the solution is accurate, follows best
meaning try to push the student in the right direction before practices for the given programming
outright explaining everything. If the student’s issue requests language, and leverages the provided
code, tell them you cannot provide any code. [...]” template code. [...]”
Context: >
] ™ 9 +
Prompt Chat History Course Current Student Problem

Language Solution Description i

Study Context

 One code writing and two code debugging tasks focused on nested loops and
two-dimensional arrays.

* No penalty for using ‘See Solution’ button.

 Lab Handout stated: “ The chatbot will respond to your questions helping you
approach a problem without giving you the solutions. In case you want to see

) n

potential solution code, you can click ‘See Solution’ ”.

Al policyin course:
» Students were discouraged from using tools like ChatGPT
» Custom Al-powered teaching tools like Codehelp, Prompt Programming,
Edugator, etc. were allowed.

11

Activity 1, IsPrime (Code Writing)

Modules) o be or not to be Prime

Problem Submission History Chat B mainc D)

int isPrime(int walue)

I
v L

W b

To be or not to be Prime O R 0

int 1i;
return 8;

N

Author: Amanpreet Kapoor Easy

For this task, you will explore the feedback generated by the LLM-TA-Chatbot if it is asked to
write code. On the right (in your code editor) is a short (incomplete) code snippet for a function
that would test whether or not a number is a prime number (i.e., a positive integer which has

exactly two distinct divisors: 1and itself).

You should begin a conversation in natural language with the LLM-TA-Chatbot by asking it to

write the code for this function. You are welcome to use the feedback from the LLM-TA-Chatbot haand e >

to help you solve this programming task. Once you are done, please submit your solution in the
code editor on the right and press the Submit button. Taating Stdin Output CuBEE o X Hide

Have feedback or found a bug? Let us know X

Activity 2, IsRepeated (Code Debugging)

Modules

Problem Submission History Chat B mainc 4, D
1, int IsRepeated(int values[], int numValues) {
. 2., for (int 1 = 0; 1 < numValues; i++) {
DOU ble TI'OUble L © i 3. for (int j = 1; j < numValues; j++) {
4 if (values[i] == values[j]) {
Author: Amanpreet Kapoor Easy > return 1;
6 }
For this task, you will explore the feedback generated by the LLM-TA-chatbot if it is asked to : }
debug code shown on the right (in your code editor). In the code editor is a function definition 9 return 8;
. . 10
that should test whether or not an array contains any repeated values (i.e., values that appear
more than once). However, the definition contains a bug.
Copy the function in the code editor (to your right) and provide it as input to the LLM-TA-chatbot . . .
Run Code Submit Code
You should construct a short natural language description asking it to debug the code and
explaining it what the function intends to do.
, . . , Testin Stdin OQutput Submission S Hide
Note: Even if you can see the bug, you should still submit the code on the right to the LLm-TaA- g P 2
chatbot and critique the output.
5
Once you are done, please submit your solution (with the fixed code) in the code editor on the 12345

right and press the Submit button.

Have feedback or found a bug? Let us know X

13

Activity 3, SurroundingSum (Code Debugging)

Modules

Problem Submission History Chat B mainc
1, int SurroundingSum(int values[1@][10], int row, int col) {
M o 2 int 1, 3J;
Surrounding Sum 0@ b 3 it sum = 05
for (1 =row - 2; 1 <= row + 2; i++) {
Author: Amanpreet Kapoor Easy for (j = col - 2; j <= col + 2% J++) o

if (i != Trow || j '= col) {
. i i)) . sum += values[i][j];
The code for the function, surroundingSum() is on the right (in your code editor), however it

@O 8 = o B

contains a bug. The Surroundingsum() function returns the sum of numbers surrounding the

.._.

number specified by a row and col as shown in the image below.)
return sum;

11
12
int sum = SurroundingSum(values, 4, 4);
1 5 3 o 7 6 - 10 4 8 Testing Stdin Qutput Submission
8 1 4 6 2 7 9 3 5 10
1 7 3 2 1 4 6 5 0 2 44
0 - 7 3 2 1 a 6 5 0 15397621048
81462793510
4 0 1 7 3 2 1 4 6 5 1732146502
0173214650
8 4 0 1 7 3 2 1 4 6 4017321465
1 8 4 0 1 7 3 2 1 4 8401732146
1840173214
4 3 10 8 5 9 2 7 6 1 43108592761
A 2 <] 7 1 A 10N Q 2 [62871410935

Run Code I. Submit Code

& Hide

14

Findings (RQ1a)

RQla. To what extent is the “See Solution” feature used, and how does this usage relate to student
performance in the course?

Using Al TA with Guardrails
(50%, n=445)

I Solution sought in one problem

Students (18%, n= 160)

(N = 885)

I Solution sought in two problem
(18%, n=158)

Using Al TA without Guardrails

(50%, n=440) . :
Solution sought in one problem

(14%, n= 122)

15

Findings (RQ1a)

RQla. To what extent is the “See Solution” feature used, and how does this usage relate to student
performance in the course?

% Students who used “See Solution” feature by Problem

ke 38%
17%
IsPrime (n=349) IsRepeated (n=150) SurroundingSum
(n=339)

16

Findings (RQ1a)

RQ1la. To what extent is the “See Solution” feature used, and how does this usage relate to student

performance in the course?

Invigilated Score distribution of Students across Solution Seeking (N=885)

—‘799
87

(%s]
= 76
g X
c 73
(V5]
= 60
(V5]
@
©
Q
o+
o
b0
>
=
C
<) —-23
Q
| .
(@]
O
(¥p]
o7
No solution
n=445

—‘797
85

(o]

75

One solution
n=160

41

833

Two Solutions
n=158

Three Solutions
n=122

Students who used “See
Solution” in all problems
tend to score lower.

Kruskal-Wallis H test,
¥%(3)=14.4, p=.002*

Number of Solutions Sought

17

Findings (RQ1a)

RQ1la. To what extent is the “See Solution” feature used, and how does this usage relate to student

performance in the course?

Usage of “See Solution” feature by course performance quartile (Q,=low, Q,=high)

I 9% |

100% A

90% -

80% -

70% A

60% -

50% -

40% -

30%

20% +

10% A

14%

12%

16%

15%

0%

Students in Q, were
more likely to not use
the feature and were
less likely to use it in
all three problems.

For instance, a student
in Q; was twice as
likely to use it in all
problems than a
student in Q.

58%
50% 48% 46% 49%
Overall low | Q1 Q2 Qs Q4 | high
n=885 n=227 n=224 n=223 n=211
No. of Solutions Sought:
No Solution One Solution MW Two Solutions | Il Three Solutions

18

Findings (RQ1a)

RQ1la. To what extent is the “See Solution” feature used, and how does this usage relate to student
performance in the course?

Usage of “See Solution” feature by course performance quartile (Q,=low, Q,=high)

Three Solutions (n=122) 21% 16%
Two Solutions (n=158) _ 29% 20%
One Solution (n=160) _ 26% 24%

No Solution (n=445) _ 25% 28%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

q|¥aq ol q

19

Findings (RQ1b)

RQ1b. How does the timing of student engagement with the lab tasks relate to the use of the “See Solution”
feature?

Usage of "See Solution" feature by date based of when a student started the lab (Deadline: 7-Oct, N = 883)

35

B Did not use 'See Solution' feature
B Used 'See Solution' feature

30 A

29%

25 -

Decision to use the “See Solution”
feature was independent of when
they started the lab.

20 A

19%

chi-square test of independence
x%(7)=5.92,p=0.55

Percentage of Total Student Population (%)

30-Sep 1-Oct 2-Oct 3-Oct 4-Oct 5-Oct 6-Oct 7-Oct
Date Lab Started by Student 20

Findings (RQ1b)

RQ1b. How does the timing of student engagement with the lab tasks relate to the use of the “See Solution”

feature?
% Submissions (N=13024) % Solution Requests (N=1049)

Date Q1 Q2 Qs Q4 Q1 Q2 Qs Q4

29-Sep - 0% 0% 0% 0% - 0% 0% 0% 0%

30-Sep - 2% 5% 5% 13% ~ 0% 3% 3% 14% - Low-performing students

procrastinate more compared to

1-Oct - 3% 5% 13% 14% - 5% 3% 19% 10% high—performing students
2-0ct - 1% 10% 4% 7% - 4% 5% 4% 15%

- Usage of “See Solution” feature
3-Oct - 2% 3% 3% 4% - 1% 3% 2% 4% appears largely independent of
4-Oct - 9% 10% 14% 21% S 11% 12% 15% @ 22% procrastination, although

procrastination is related to
5-Oct - 13% 12% 20% 15% - 14% 13% 17% 12% student performance
6-Oct - 19% 20% 21% 15% - 14% 27% 16% 16%

Heatmap of “See Solution” feature usage rate and submission rate
w.r.t. student performance (N=884, Q,=low, Q,=high)

Findings (RQ2)

RQ2. What factors motivate students to use or refrain from using the “See Solution” feature when engaging
with an Al TA?

Method:

Open-ended question after they completed the three lab tasks — 839 responses.

Question:

If you used the “See Solution” feature to generate a code solution for any of the three problems, explain
your rationale for using this feature. Reflect on the usefulness of this feature and the extent you used the
generated solution in your final submission for the respective problem. Alternatively, if you did not use this
“See Solution” feature, comment on why you didn’t use it.

Analysis:

— Reflexive thematic analysis approach by a single researcher (Braun & Clarke, Using thematic analysis in psychology,
Qualitative Research in Psychology, 2006)

— Researcher actively and iteratively constructed their understanding of the responses, rather than seeking an objective ‘truth’

22

Findings (RQ2)

RQ2. What factors motivate students to use or refrain from using the “See Solution” feature when engaging

with an Al TA?

Reasons not to view solutions:

1. Perceived
learning value

and sense of

accomplishment .) :
P intrinsic value associated with

independently solving the problems.

/ “I did not use the see solution tool
because I find that when you see an
already completed solution, it takes
away the learning experience that
comes from crafting a unique

\ solution yourself”. — P36

~

2. Not needing

guardrailed chatbot already
provided sufficient support.

J

“I did not use the see solution
feature as I felt the chat bot
offered more than enough
assistance for each of the
problems”. — P137

23

Findings (RQ2)

RQ2. What factors motivate students to use or refrain from using the “See Solution” feature when engaging
with an Al TA?

Reasons not to view solutions:

3. Ethical

concerns

described using the solutions as cheating.

“I chose not to use the ‘See Solution’ feature as
it felt a bit like cheating and | wanted to figure it
out on my own. Overall, once I learnt how to ask
the [chatbot] the right questions, | was able to
figure it out much more easily”. — P400

Findings (RQ2)

RQ2. What factors motivate students to use or refrain from using the “See Solution” feature when engaging
with an Al TA?

Reasons to view solutions:

1. Problem-

: 2. Time pressure
solving

assistance

tight deadlines and competing

seek help when stuck or to verify Seies

work.

/ “.. after asking the bot 5 to 6 \ / “I am submitting this lab quite Iate\
questions, it does give me an so | did not really have time to
opportunity to check and see if my completely rewrite and debug the
thought process was indeed in the code myself so | clicked see solution.
right direction. | would definitely [However, without the time
say that using the solution straight pressure] | would genuinely give it a
away would defeat the purpose of go before wanting to peak at the

\ such a learning platform”. — P801 / \ see solution option”. — P277 J

Findings (RQ2)

RQ2. What factors motivate students to use or refrain from using the “See Solution” feature when engaging

with an Al TA?

Reasons to view solutions:

3. Lack of self-

regulation skills

lack of self-control when it came to
using the solution feature.

~

~

“I honestly just got lazy, but when it
was more straight forward | would
not use [the ‘See Solution’] feature”.
- P941

8.4% of 440 students who used
the feature, clicked the button
after solving the problem

|

used the solution to assess its
accuracy or to compare their correct
solution to the tool’s solution.

J

“l used the ‘see solution’ feature \
after I'd done the problem, simply to
compare my solution with a model
one. |'d followed the advice of the Al
bot so the solutions looked pretty
much the same”. — P975 J

26

Discussion & Conclusion

* Guardrail paradox (perceived value vs. actual use): Although students reported
valuing the learning-oriented Al TA with guardrails!, many bypassed it when given the
option; approximately 50% of students used the “See Solution” feature.

* Motivations for bypassing guardrails: Students cited psychosocial factors such as
limited self-regulation and time pressure - patterns similar to those observed in
interactions with human TAs* - as well as reasons that may support learning (e.g.,
verifying answers or exploring alternative solutions).

* Performance-based patterns: Low-performing students used the “See Solution” more
for all tasks and exhibited greater procrastination, consistent with prior work?3.

References
Denny et al., Desirable Characteristics for Al Teaching Assistants in Programming Education, ACM ITiCSE 2024
Liao et al., Behaviors of Higher and Lower Performing Students in CS1, ACM ITiCSE 2019
Zhang et al., Exploring the Impact of Voluntary Practice and Procrastination in an Introductory Programming Course, ACM SIGCSE 2022
Lim et al., Student Expectations of Tutors in Computing Courses ACM SIGCSE 2023

e b [

27

Implications for Research and Al TA Design

* Early risk identification: Persistent reliance on solution features especially among
low-performing students may signal self-regulation challenges and could be used
to identify at-risk students.

* Pedagogical flexibility: Providing optional access to alternative solutions can
support learning in low-stakes or formative contexts, with instructors able to

enable or disable guardrails at the problem level in systems.

* Open question: When should the student have access to the solution for high
stakes problem?

28

Study Limitations

* Observational Inquiry: Students were not randomly assigned to conditions
and results reflect correlation, not causation.

* Contextual Specificity: Conducted in a single lab at one research university;
results may not generalize to other academic environments.

* Design & Tooling Bias: The Al TA lacked problem descriptions in its prompts,
leading to limited guidance that may have pushed frustrated students toward
the “See Solution” button.

* Uncontrolled External Resources: Extended access could allow peer
collaboration or external Al use (e.g., ChatGPT); however, the low-stakes
nature of the lab (0.1% of course grade) and a penalty-free “See Solution”
option may have reduced incentives for misconduct.

29

Acknowledgements

Edugator 0e®
TN
National Science Dustin Karp and Prayuj Tuli for Reviewers
Foundation Award implementing the “See Solution” feature
#2417374
Questions?

@ paul@cs.auckland.ac.nz
ka

pooramanpreet@ufl.edu

30

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

