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Abstract

Al-powered chatbots and digital teaching assistants (Al TAs) are
gaining popularity in programming education, offering students
timely and personalized feedback. Despite their potential bene-
fits, concerns about student over-reliance and academic miscon-
duct have prompted the introduction of “guardrails” into AI TAs—
features that provide scaffolded support rather than direct solutions.
However, overly restrictive guardrails may lead students to bypass
these tools and use unconstrained Al models, where interactions
are not observable, thus limiting our understanding of students’
help-seeking behaviors. To investigate this, we deployed a novel Al
TA tool with optional guardrails in one lab of a large introductory
programming course. As students completed three code writing
and debugging tasks, they had the option to receive guardrailed
help or use a “See Solution” feature which disabled the guardrails
and generated a verbatim response from the underlying model.
We investigate students’ motivations and use of this feature and
examine the association between use and their course performance.
We found that 50% of the 885 students used the “See Solution”
feature for at least one problem and 14% used it for all three prob-
lems. Additionally, low-performing students were more likely to
use this feature and use it close to the deadline as they started
assignments later. The predominant factors that motivated students
to disable the guardrails were assistance in solving problems, time
pressure, and lack of self-regulation. Our work provides insights
into students’ solution-seeking motivations and behaviors, which
has implications for the design of AI TAs that balance pedagogical
goals with student preferences.

CCS Concepts

« Social and professional topics — Computing education.

Keywords
AI tutor, Feedback, Digital TAs, Automated Tutors, Programming

This work is licensed under a Creative Commons Attribution 4.0 International License.
ACE 2026, Melbourne, VIC, Australia

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2352-0/26/02

https://doi.org/10.1145/3786228.3786233

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Leo Porter
University of California San Diego
La Jolla, CA, USA
leporter@ucsd.edu

Marc Diaz
University of Florida
Gainesville, FL, USA

marcgabel5@gmail.com

ACM Reference Format:

Amanpreet Kapoor, Paul Denny, Leo Porter, Stephen MacNeil, and Marc
Diaz. 2026. Exploring Student Behaviors and Motivations when using Al
Teaching Assistants with Optional Guardrails. In 28th Australasian Com-
puting Education Conference (ACE 2026), February 09-13, 2026, Melbourne,
VIC, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3786228.3786233

1 Introduction

Providing students with timely and high-quality help is essential
in programming courses. However, scaling the support that can be
provided by human teaching assistants (TAs) is difficult in large
classes where the needs of students seeking help can vary consid-
erably. Thus, there has been increasing interest in the use of Al
TAs for providing equitable support to learners in introductory
courses [34]. Recent work has shown that such tools can generate
responses that are both correct and helpful [6], provide students
with the sense of having a personal tutor [24], and produce timely,
tailored feedback [22]. However, the growing adoption of AI TAs
has also raised concerns such as inaccuracies in the Al-generated
content [7], student over-reliance on such tools [7, 43] which can
potentially compound metacognitive difficulties [35], and the risk
that students may generate and copy solutions instead of learning
concepts [20].

To address concerns about over-reliance and misuse, researchers
have explored incorporating ‘guardrails’ into Al TAs to provide
scaffolded support that encourages learning rather than offering
direct answers [6, 16, 22]. While students often appreciate such
safeguards, they may also seek direct solutions when under time
pressure, highlighting the complex dynamics of help-seeking be-
haviors [19, 23]. If the guardrails are perceived as overly restrictive,
students may turn to unconstrained tools like ChatGPT [33], which
lack pedagogical safeguards and instructor oversight and can un-
dermine learning goals. Understanding how students interact with
and value these systems is thus critical to designing digital TAs
that balance educational objectives with student preferences.

To explore student-interactions with guardrailed AI TAs fur-
ther, we conducted an observational study in a large introductory
programming course. We built and deployed a novel Al TA with
optional guardrails in our Edugator tool [8], and asked students
to complete three programming tasks—focused on code writing
and debugging—while interacting with the AI TA. Students could
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choose whether to use the guardrailed version, which would not
reveal code solutions, or disable the restrictions via a “See Solution”
feature to generate a verbatim response from the underlying model
which may include a code solution. Once they had completed the
tasks, the students provided feedback about the tool and described
their motivations for using (or not using) the “See Solution” feature.
We investigate interaction patterns and performance based on the
use of this feature, guided by the following research questions:

RQ.1a To what extent is the “See Solution” feature used, and how
does this usage relate to student performance in the course?

RQ.1b How does the timing of student engagement with the lab
tasks relate to the use of the “See Solution” feature?

RQ.2 What factors motivate students to use or refrain from using
the “See Solution” feature when engaging with an AI TA?

Understanding these student behaviors and motivations can
guide the development of AI TAs that provide meaningful support,
encourage academic integrity, and help students achieve desired
learning outcomes.

2 Related Work
2.1 Help-Seeking in Computing Courses

Effective help-seeking is an important metacognitive skill [2], es-
pecially for novice programmers who can obtain help in many
ways, but may engage in unproductive behaviors like avoiding or
over-relying on help [30, 41]. Human TAs have traditionally pro-
vided front-line support when students are stuck, although prior
research has revealed mismatches between student expectations
and educational goals during help-seeking interactions with TAs.
In a recent study by Krause-Levy et al., researchers observed that
TAs frequently provide solutions during help sessions rather than
guiding students through the problem-solving process [19]. Sim-
ilarly, Villegas-Molina et al. interviewed TAs and found that TAs
sometimes report giving away solutions when faced with a long
line of students seeking help as doing so takes less time [44]. Re-
garding students seeking assistance, Lim et al. interviewed students
and found that under the pressure of task deadlines, they often
prioritize completing tasks over mastering concepts, and therefore
sometimes prefer receiving direct answers [23]. These findings sug-
gest that both students and TAs seek or provide direct solutions
due to situational factors such as time pressure and workload.

In addition, it can be challenging for tutors to spend the necessary
time with each student who seeks help when handling multiple re-
quests at busy times [21, 28, 38]. This can be exacerbated by student
procrastination, which is a well-known barrier to success in pro-
gramming courses [9, 17]. Students who delay starting assignments
not only risk poorer academic outcomes but also leave insufficient
time to seek meaningful help [29, 46]. The increased demand for
help close to deadlines can place a significant strain on TAs, who
are already limited in their availability outside typical working
hours. Moreover, not all students feel equally confident to seek
help in-person [42]. These challenges have driven interest in more
consistent, scalable, personalized, and private support options, such
as digital AI TAs [6, 34].
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2.2 Emergence of AI-Powered Assistants

The rapid improvement in capabilities of large language models
(LLMs) has enabled the creation of Al-powered digital teaching
assistants (Al TAs). Initial work in this space evaluated the qual-
ity of responses produced by open-source and proprietary LLMs
to historical repositories of student questions, finding that LLMs
can provide rich meaningful feedback to students and can solve a
variety of programming problems [12, 13, 18]. More recently, tools
have been developed with integrated LLM support and deployed
to answer student queries in real-time [24, 32]. However, ensur-
ing that responses are pedagogically sound remains a challenge.
Qiao et al. address this by providing instructor oversight of the
responses generated by the LLM, but this limits scalability [37].
More commonly, Al-powered tutoring tools are being designed to
provide appropriate help automatically so that students can call
on them when needed [26]. It is also worth noting that as model
capabilities advance, questions about pedagogical quality continue
to be examined. Recent work by Brown et al. has shown that, when
paired with carefully designed prompts, LLMs can generate next-
step programming hints that are judged by experienced educators
to be pedagogically superior to those written by human experts [5].

A common approach to prevent misuse when designing AI TAs is
the use of ‘guardrails’. Examples are implemented in tools like Code-
Help [22] and CodeAid [16] which offer scaffolded support instead
of producing direct code solutions. Interestingly, students often say
they prefer such scaffolded tools [6]. However, if the guardrails in
an AI TA are perceived as overly restrictive, students may turn to un-
constrained LLMs like ChatGPT, which lack pedagogical safeguards.
Such interactions are not monitored, and thus valuable insights into
student learning behaviors are lost. Understanding how students
interact with and value AI TAs with or without guardrails is essen-
tial for addressing these challenges and ensuring their integration
meets learning objectives.

2.3 Over-Reliance on GenAl

One of the most commonly cited concerns regarding GenAlI use
in CS education is that of student over-reliance [7, 34, 43]. Tools
like ChatGPT and GitHub Copilot can generate detailed solutions
to many programming-related tasks, which may undermine the
development of problem-solving and computational thinking skills
[27, 45, 47]. Lau and Guo warn that such reliance can harm founda-
tional learning, while Sheard et al. highlight the challenges GenAl
poses to maintaining academic integrity [20, 40]. In addition, stu-
dents themselves recognize the risks of over-reliance. Hou et al.
found that while students value the convenience of GenAl, they
acknowledge that improper use can harm independent learning
[15]. Despite this, GenAl tools are frequently used. Nearly a quarter
of surveyed students reported using tools like ChatGPT daily or
hourly, often for debugging and code generation [15].

Within the context of general education, Zhang et al. identified
factors associated with students’ over-reliance on GenAlI tools such
as ChatGPT, finding that academic self-efficacy influences Al de-
pendency, and this relationship is mediated by academic stress and
performance expectations [47]. This suggests that psychological
factors, such as stress and low self-efficacy, can increase students’
reliance on GenAl tools. However, literature examining how these
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Figure 1: Interface for Edugator Tool and Lab Activity 1: isPrime Code Writing Task

factors manifest in computing education is scarce, highlighting
the need for the community to investigate how and why students
over-rely on Al tools in CS education.

The risks associated with over-reliance grow as GenAl tools
advance. Recent studies have demonstrated that tools like GPT-4
can solve a wide range of programming problems, including visual
challenges like Parsons Problems and computer graphics tasks
[10, 11, 14]. While this capability can accelerate problem-solving
for advanced students, Prather et al. caution that struggling students
may adopt “shepherding” behaviors, relying heavily on Al without
meaningful engagement [35]. This reliance may create an illusion
of competence, leaving essential skills underdeveloped.

The challenge lies in balancing the need for pedagogical safe-
guards with the flexibility to meet students’ immediate help-seeking
preferences. In this study, we examine student interactions with an
AI TA that incorporates scaffolded support through guardrails. It
also includes a feature that allows students, when needed, to remove
these restrictions to access unfiltered LLM-generated responses.
This dual approach aims to balance pedagogical safeguards with
student preferences, and provide insight into how such features
influence help-seeking behaviors.

3 Methods
3.1 Study Design and Context

We designed an observational study to investigate the behaviors
and motivations of computing students’ when interacting with an
AI TA chatbot with optional guardrails. Our study was conducted
in the context of a large introductory programming course offered
at a public research university in the Australasian region in Fall
2024. Data collected in this study was covered by an ethics approval
for the archival analysis of naturally occurring coursework data.
A total of 1,034 students were enrolled in the course, which
spanned a 12-week teaching term. Students completed weekly lab

exercises, each contributing 1% toward their final grade. Data for
this study was collected in one of the weekly labs (described in
Section 3.3) where students were asked to complete one code writ-
ing task and two code debugging tasks (using the C language), and
complete two quantitative and two qualitative questions. This lab
was graded as part of the coursework. The lab tasks were hosted
on our novel tool (described in Section 3.2) which offered students
access to an Al chatbot with optional guardrails. The three tasks
used in this study were similar to the ones used in a previous study
on evaluating the efficacy of Al TAs with guardrails on students’
learning outcomes [6]. However, the previous study used a different
tool with mandatory guardrails — no “See Solution” feature — and
a distinct mode of student interaction with the Al assistant. In the
current study, the tool provided a conversational chatbot interface
that had access to the student’s code in the editor, whereas the previ-
ous study relied on a one-shot Al response after students manually
pasted their code, error, and prompt in the tool’s interface.

All enrolled students were sent an invitation to participate (909
students accepted the invitation to the tool; 885 participated in at
least one of the three programming tasks by submitting code to
the system). In this paper, we analyze data collected from the 885
participating students.

3.2 GenAI Coding Tool

We developed the Edugator web-based GenAl-enabled coding tool
[1, 8] that allows instructors to write programming problems and
offers students a clean interface to preview the problem description,
code their solution in the browser, and receive immediate feedback
on their solutions (see Figure 1). Additionally, the tool provides
access to an LLM-powered AI TA (see Figure 2).

AI TA with guardrails. Our AI TA chatbot employs guardrails by
way of a prompt and had access to a student’s chat prompt, chat
history, course programming language, and their solution in the
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code editor. The prompt used to generate a response to a student’s
query was similar to the one used in CodeHelp [22] with a few
minor changes to support a conversational interaction:

Respond to the student with a brief educational ex-
planation, helping the student figure out the issue
and understand what they’re doing incorrectly. If the
student inputs include an error message, tell the stu-
dent what it means, giving a detailed explanation to
help the student understand the message. Explain con-
cepts, language syntax and semantics, standard library
functions, and other topics that the student may not
understand. Be positive and encouraging, and keep it
conversational, meaning try to push the student in the
right direction before outright explaining everything.

In the same prompt, instructions were added to support guardrails
and prevent the LLM from providing a student with any example
code snippets, a solution, or a corrected version of their code (part
of the prompt is omitted for brevity — signified using [...]):

If the student’s issue requests code, tell them you can-

not provide any code. [...] Do not write any example
code blocks. [...]

The prompt used for AT TA with guardrails was not fed the prob-
lem description. This design was intended to encourage students
to develop prompting skills by providing sufficient context to the
AI TA chatbot when conversing with it.

LLM-TA Chatbot Response

Initiates a conversation and answers students’ questions

I
Problem | Submission History  Chat

The logic for checking if a number is prime s incorrect. A prime number should only
be divisible by 1and itself, so your Ioop should start from 2, and count should be 1
for a prime number. Would you like more details on fixing this logic?

Completed Code
int isPrime(int value) {
if (value ¢= 1)
return 0; // 6 and 1 are not prime

for (int 1 = 2; i <= sqrt(value); i++)
if (value % i == 6)

return 03
return 1;
}

check Show Potential Solution
Ask LLM-TA for solution code

Figure 2: Chat interface to ask questions and solicit solution

“See Solution” feature — no guardrails. To evaluate solution-
seeking behaviors for the purposes of this study, we added a new
feature to the AI TA where students have the option to press the
“See Solution” button after initiating the chat which allows them to
deactivate the guardrails to see LLM generated-solution code along
with the scaffolded response (see Figure 2). The solution code was
not preset and was instead dynamically generated using a prompt to
show the AI-TA’s capability to produce contextualized solutions on
demand rather than relying on fixed, instructor-authored answers.
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The button was labeled “See Solution” so that students were aware
that the feature can generate a solution, as they were unlikely to be
familiar with the ‘guardrail’ terminology used in the literature. The
prompt fed to retrieve the solution, asked the LLM to assume that it
is “a coding expert tasked with providing solutions to C programming
problems”. Further, the model was instructed to provide the student
with a detailed explanation of the problem, including the correct
code solution using the following prompt:

Your goal is to provide a detailed, educational explana-

tion of the problem, including the correct code struc-

ture and logic. Your responses should be concise, clear,

and easy to understand. Ensure that the solution is

accurate, follows best practices for the given program-

ming language, and leverages the provided template

code. [...] Your response should include:

- Explanations for any non-trivial code or logic used,
including why certain approaches were chosen.

- Best practices related to the solution (e.g., code effi-
ciency, readability, and maintainability).

- A clear and well-documented solution to the prob-
lem, starting from the provided template code.

- A solution that takes into account edge cases and
challenges discussed with the code assistant.

The problem statement was also sent to this prompt in addition
to the aforementioned attributes that were used for the AI TA with
guardrails.

Our AI TA was backed by OpenAI’s 40 model and the total cost
of LLM usage during the study (9 days) was US$53.00.

3.3 Lab Activities

For all lab tasks, the course used the CodeRunner platform [25].
For this study, which was run as part of “Lab 9” in the course, stu-
dents were provided some instructions within CodeRunner as well
as a link to the Edugator tool [8]. The instructions on CodeRun-
ner stated that in order to earn the 1 mark (out of the lab’s 10
marks) for the task, they needed to solve the three problems in the
Edugator tool. The remaining marks were for other programming
problems that are not relevant for this study. All programming tasks
corresponded to the course content covered in Week 9 (primarily
targeting nested loops and two-dimensional arrays). Additionally,
a lab instructions handout provided an overview of the Edugator
system [8], including system navigation, how to test code, converse
with the AI-TA chatbot, and viewing potential solutions via the
“See Solution” button (similar to Figure 1 and 2). A figure (similar
to Figure 2) in this handout explained to the students that,

The chatbot will respond to your questions helping
you approach a problem without giving you the solu-
tions. In case you want to see potential solution code,
you can click “See Solution”.

There were no penalties for using the “See Solution” feature. All
students saw the instructions on CodeRunner and were expected
to read the lab handout prior to accessing the Edugator tool. To
avoid students being overly cautious about using a feature labelled
“See Solution”, several approaches were used to communicate that
its use was explicitly allowed. Edugator was demonstrated in class,
providing an overview of the tool and its features. Attendance in
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lectures was optional, but all lectures were recorded and available
online. So every student had access to a recording of this demonstra-
tion. During this demonstration, it was made clear to students that
they were welcome to make use of any of the features of Edugator,
including the “See Solution” feature. Students were informed that
both the Chatbot and the “See Solution” feature were powered by
an Al model, and that if students chose to use the “See Solution”
feature they could do so without any penalties and that they were
“welcome to make use of the generated solution if they wanted to”.
In addition, as part of this demonstration, students were shown
the reflection questions they were going to be asked after using
Edugator. This included a question about their choice regarding
whether or not to use the “See Solution” feature and the extent to
which they found it useful. Within the Edugator tool itself, for each
problem description, students could see messages such as: “You are
welcome to use the feedback from the LLM-TA Chatbot to help you
solve this programming task”. It appears that the messaging around
allowed use of the “See Solution” feature was broadly successful.
For one thing, it was widely used by many students in the course.
In addition, we observed just one question on the class forum that
explicitly asked whether usage of this feature would be penalised.
For context, the study took place in the second half of 2024,
around a year and a half after ChatGPT became public. Students
were generally discouraged from using tools like ChatGPT which
were not designed for learning purposes. Instead, several custom
Al-powered teaching tools like Edugator were woven throughout
the course. Such tools included CodeHelp (a guardrailed question
and answer tool that students could use for open questions when
working on their project) [22], and Prompt programming (a tool
where students practice writing code-generating prompts for solv-
ing programming tasks) [36]. In general, the expectations in the
course were that students would make use of the tools that were
provided to them by the course instructors, such as Edugator, but
that they should not rely on unconstrained tools such as ChatGPT.
As with all labs in the course, given the large cohort size, the lab
was run over a period of one week. Students were free to complete
the lab at any time during that week (online), and they could also
attend an in-person lab (which is optional) that was scheduled
throughout the week, if they wanted assistance from a human TA.
In addition to the three programming tasks that are used in this
study, students were also asked to complete two open-ended and
two quantitative reflection questions that were configured as sep-
arate questions within CodeRunner. Completing these questions
allowed students to get 1 mark (out of the 10 marks). These ques-
tions were ordered to appear after the CodeRunner question that
linked to the Edugator tool. It would be possible for students to
skip ahead to the reflection question without completing the Eduga-
tor tasks. However, given the high number of students that both
completed the coding task on Edugator (n=885) and gave an open
reflection response (n=839), we expect that most students did these
in order (there is not much benefit or incentive for students to do
them out of order). We now briefly describe the three activities.

Activity 1: IsPrime (Code Writing). Activity 1 required students
to finish the incomplete IsPrime() function provided (as shown
in Figure 1). Students were prompted to “begin a conversation in
natural language with the LLM TA Chatbot by asking it to write the
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code for this function”. Such a request would not result in a direct
code solution, due to the presence of the guardrails. For instance, a
sample interaction between the Al TA and a student (S251) for this
lab activity is shown in Table 1.

User Chat Prompt and Response

Student (S251) | write a function so that it returns 1 if the input is a
prime number and 0 otherwise
AITA | I'm sorry, but I can’t write the function for you. Do
you have any specific questions about how to check
for prime numbers?
Student (S251) | how should i check in C if a number is prime

AITA | To check if a number is prime in C, you’ll need to
iterate from 2 up to the square root of the value and
check for divisibility. If the value is divisible by any
number in this range, it’s not a prime. Do you need
help with how to implement the iteration and the
condition check?
Student (S251) | What should my if statement look like

AI'TA | Your loop should go up to i <= sqrt(value) in-
stead of 1 < sqrt(value). Also, you should return
0 if a divisor is found and 1 if none are found. Is this
what you were looking for?

Table 1: Transcript of a student conversing with the AI TA
for Activity 1

Activity 2: IsRepeated (Code Debugging). Activity 2 provided a
buggy implementation of an IsRepeated() function, which should
return true if a one-dimensional array contains any repeated values.
A nested loop was incorrectly defined by initialising the inner loop
variable (j) to be equal to (= i) rather than larger than (= i + 1) the
value of the outer loop variable. Students were asked to: “Copy the
function (which has a bug) and provide it as input to the TA chatbot.
You should construct a short natural language description explaining
what the function intends to do and asking it to debug the code”.
Students were encouraged to follow this step, even if they could see
the bug, so that they could view and critique the chatbot output.

Activity 3: SurroundingSum (Code Debugging). Activity 3 in-
volved computing the sum of all values surrounding a specified
location in a two-dimensional array. The provided code contained
a bug by failing to guard against out-of-bounds array accesses in
the case that the location was on the border of the array. Similar
instructions were provided as for Activity 2.

When completing all three activities, students were instructed:
“Once you are done, please submit your solution (with the fixed code)
in the code editor on the right and press the ‘Submit’ button”. The
‘Submit’ button would run their code against a test suite created by
the instructor and would give them immediate feedback on whether
they passed test cases as well as show their score for the problem
(see Figure 1). Students could press the ‘Submit’ button any number
of times and their last submission was used for grading purposes.

Of the 885 students who participated in at least one of the three
activities, 865 students completed and passed all test cases for Ac-
tivity 1 (IsPrime), 865 students completed and passed all test cases
for Activity 2 (IsRepeated), and 850 students completed and passed
all test cases for Activity 3 (SurroundingSum).
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3.4 Data Collection and Analysis

3.4.1 Quantitative Data. We analyze log data of student interac-
tions with our tool, and summarize the activity in two ways: for
how many of the three lab problems the “See Solution” feature
was used, and how the overall use of the tool was distributed over
the 9 day period from release of the lab until the deadline. The
actions of interest were: pressing the “See Solution” button, and
making a code submission (either a compilation request with a
user defined input using the “Run” button or a request to run code
against the instructor test suite using the “Submit” button). We
also calculate the course mark for each student based on the invigi-
lated assessments in the course (i.e., the average of three proctored
pen-and-paper exams: two midterms and one cumulative exam),
and use this score as a proxy for their course performance. Further,
we grouped students into quartiles for the purpose of our analysis
similar to Salguero et al’s study [39] (see Table 2). Data analysis
was conducted in Microsoft Excel.

Quartile | No. of students (N=885) | Score Range in the Course
01 227 [7,59]
02 224 (59, 75]
03 223 (75, 86]
Q4 211 (86-99]

Table 2: Student grouping into quartiles based on perfor-
mance in invigilated assessments (Q;=low, Q4=high)

3.4.2  Qualitative Data. We asked students an open-ended question
after they completed the three lab tasks: If you used the “See Solution”
feature to generate a code solution for any of the three problems,
explain your rationale for using this feature. Reflect on the usefulness
of this feature and the extent you used the generated solution in your
final submission for the respective problem. Alternatively, if you did
not use this “See Solution” feature, comment on why you didn’t use it.

A total of 839 non-blank responses (completion rate: 95%) to
this question were analyzed by a single researcher using a reflex-
ive thematic analysis approach [4]. The process involved 1) the
researcher familiarizing themselves with the responses, 2) open-
coding the responses, and 3) iteratively identifying themes. The
themes were selected based on their importance and relevance to
the research question. Rather than focusing on coder agreement or
inter-rater reliability (which are not appropriate for the reflexive
nature of thematic analysis [31]), our process ensures validity by re-
flexively engaging with the data by revisiting it multiple times. The
researcher actively and iteratively constructed their understanding
of the responses, rather than seeking an objective ‘truth’ in the data.
Finally, to exemplify and contextualize the themes and improve
reliability, we present representative examples from the students’
responses.

4 Results
4.1 Quantitative Analysis

4.1.1 Solution-seeking and course performance. Students clicked
the “See Solution” button 1049 times in total across the three prob-
lems (ranging from 0 to 10 clicks per student, as some students
pressed the button more than once for a problem). We observed
that 50% of the 885 students (n=445) did not use the “See Solution”
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feature for any of the three problems (see Figure 3). Of the remain-
ing 50% of students who used the feature at least once (n=440),
36% (18% overall) used the feature for one of the problems (n=160),
36% (18% overall) used the feature in two of the problems (n=158),
and 28% (14% overall) used it in all three problems (n=122). Across
problems, 39% of students used the feature in the IsPrime problem
(n=349), 17% used it in the IsRepeated (n=150), and 38% students
used it to see the solution to the SurroundingSum problem (n=339).

Students who used the “See Solution” feature for all three prob-
lems scored, on average, lower on the invigilated tests (u3 = 66)
compared to students who did not use the feature (49 = 73) or used
it to see solutions to one or two of the problems (u1 = 72, yp = 73).
Since the performance data was not normally distributed, a Kruskal-
Wallis H test was conducted to test the null hypothesis—the median
invigilated scores are the same across the four groups of students based
on their usage of the “See Solution” feature. This test revealed that
there is a significant difference in the average invigilated scores
among the four groups (those who did not use the feature and those
who used it for one, two or three problems), y*(3) = 14.4, p = .002.

100% q
90% A
80% A

70%

60% A

50% q

40% -

30% 4 58%
50% 48% 46% 49%
20% 4
10% 4
0% " . . . .
Overall Q1 Q2 Qs Qs
n=885 n=227 n=224 n=223 n=211

No. of Solutions Sought:
One Solution B Two Solutions Ml Three Solutions

No Solution
Figure 3: Usage of “See Solution” feature by course
performance quartile (Q;=low, Q4=high)

Figure 3 shows the frequency of use of the “See Solution” feature
across performance quartile (Q4 = highest performing). Students in
Q4 were more likely to not use the “See Solution” feature and were
less likely to use it in all three problems compared to students in
lower quartiles (Q1, Q2, and Qs). For instance, a student in Q7 was
twice as likely to use it in all problems than a student in Q4.

4.1.2  Usage of “See Solution” feature over time. We observed that
many students start the lab close to the deadline as 29% of the
students (n=258) used the Submit/Run button to test their code in
our system for their first lab task on the same day as the deadline
(11:59pm, 7th Oct, see Table 3). However, their decision to use the
“See Solution” feature was independent of when they started the
lab, as approximately 50% of the students would use the feature
regardless of when they started working on the tasks (y?(7) = 5.92,
p = 0.55 indicating no significant differences between students who
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did and did not use the “See Solution” feature across start dates).
One exception to this were students who started the lab very early
(as one student who started the lab on Sep 29 and 65% of students
who started on Sep 30 did not use the solution feature).

Date when a student started the lab (Deadline: 7-Oct)
Used 30-Sep | 1-Oct | 2-Oct | 3-Oct | 4-Oct | 5-Oct | 6-Oct | 7-Oct
“See Solution”? | n=54 | n=88 | n=47 | n=18 | n=124 | n=125 | n=169 | n=258
No 65% 50% 49% 50% 46% 48% 51% 50%
Yes 35% 50% 51% 50% 54% 52% 49% 50%

Table 3: “See Solution” feature usage over time (N=883)!

We also computed the interaction between student performance,
student code submission activity on our system, and “See Solution”
feature usage. Figure 4 shows a heatmap of this interaction. We
observe that 52% of the submissions and “See Solution” clicks by
students in the lowest quartile, Q1 were within the last day before
the assignment was due and this behavior close to the deadline
gradually decreased from Q; to Q4.

% Submissions (N=13024) % Solution Requests (N=1049)

Sl T T T T S R

29-Sep - 0% 0% 0% 0% - 0% 0% 0% 0%

30-Sep - 2% 5% 5% 13% - 0% 3% 3% 14%
1-Oct - 3% 5% 13% 14% - 5% 3% 19% 10%
2-Oct - 1% 10% 4% 7% - 4% 5% 4% 15%
3-Oct - 2% 3% 3% 4% - 1% 3% 2% 4%
4-Oct - 9% 10% 14% 21% - 11% 12% 15% 22%
5-Oct - 13% 12% 20% 15% - 14% 13% 17% 12%
6-Oct - 19% 20% 21% 15% - 14% 27% 16% 16%

Figure 4: Heatmap of “See Solution” feature usage rate and
submission rate w.r.t. student performance (N=8842, 0;=low,
Q4=high)

These results suggest that low-performing students procrasti-
nate more compared to high-performing students, but the decision
to use the “See Solution” feature does not seem to significantly
alter with the timing of when students start their labs. Thus, based
on descriptive patterns in the aggregate log data, using the “See
Solution” feature appears largely independent of procrastination,
although procrastination is related to student performance.

4.2 Qualitative Analysis

4.2.1 Reasons not to view solutions. Thematic analysis of open
response data (n=839) revealed a variety of reasons why participants
chose not to use the “See Solution” feature. These reasons included
expressing an appreciation for self-directed problem-solving, not
needing support, or ethical concerns.

Two students who did not use the solution feature were excluded in the table as they
started the lab on Sep 29 and an hour after the Oct 7 deadline.

20ne student who did not use the solution feature was excluded in the heatmap
analysis as they started the lab an hour after the Oct 7 deadline.
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Perceived learning value and sense of accomplishment.
Most of the students who refrained from using the solution feature
did so because of the intrinsic value they associated with indepen-
dently solving the problems and perceived learning benefits. For
example, P36 emphasized the importance of preserving learning
experience:

‘T did not use the see solution tool because I find that
when you see an already completed solution, it takes
away the learning experience that comes from crafting
a unique solution yourself.” - P36

Similarly, P1018 shared this concern, ‘I did not, as I think that
would take away from my learning.” From a constructivist per-
spective, the prevalence of students wanting to build their own
understanding by working independently is promising.

Not needing help. Another theme identified from the students’
responses was that the guardrailed chatbot already provided suffi-
cient support with feedback, debugging support, and helped them
identify missing edge cases. For those cases, students claimed that
the feature was not needed and therefore was not used. For example:

“I did not use the see solution feature as I felt the chat
bot offered more than enough assistance for each of the
problems.” - P137

Many students described how the chatbot allowed them to quickly
develop their understanding and debug any problems that arose.
For example, P99 stated that the “chatbot was helpful in understand-
ing the code and getting to the root of the issues really quickly.” For
many students like P99 and P137, this level of support was already
sufficient, with one student, P15, describing the use of “See Solution”
feature as equivalent to a ‘cheat code’.

Ethical concerns. While we explicitly permitted the use of the
chatbot and the “See Solution” feature, some students described
using the solutions as cheating:

“T chose not to use the ‘See Solution’ feature as it felt a
bit like cheating and I wanted to figure it out on my
own. Overall, once I learnt how to ask the [chatbot] the
right questions, I was able to figure it out much more
easily.” - P400

“I think seeing the solution may be a step to (sic) far for
learning as it allows users to cheat their way through
without actually using the hints to fix the code. The
hints were really good for situations where users don’t
know how to proceed.” - P611

Interestingly, students seemed to feel less concerned about inter-
acting with the chatbot with guardrails. P683 describes how using
the chatbot was not ‘cheating’ because it didn’t reveal the code, but
they equated the “See Solution” feature to cheating:

“I think [the chatbot] is generally good, because it don’t
(sic) show any code so technically you can’t use the Al to
get the answer quickly. However there is no restriction
with see solution feature so it’s still easy to cheat” - P683

4.2.2 Reasons to view solutions. Participants who used the “See
Solution” feature described various motivations, including problem-
solving assistance, time pressure, curiosity, and lack of self-regulation
skills. These themes suggest both cognitive and metacognitive fac-
tors that influence students’ decision-making.
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Problem-solving assistance. The most common reason for
using the feature was to seek help when students were stuck or
needed to verify their work. Several students described the concept
of using the solution to work backward and understand the process:

“This feature was used to reveal what the true answer
is. It helped in another way by showing the answer so I
can work backwards.” - P308

Others used the feature as a last resort when they were stuck
after multiple attempts to solve the problem independently or with
the chatbot. These behaviors align with models of self-regulated
learning, where students monitor their performance and adjust
their strategies by seeking help when needed. Similarly, others
used it as a spark of inspiration to get unstuck:

“If the chat bot wasn’t helpful or I wasn’t getting it, I
used the solution for inspiration. Solution wasn’t always
accurate tho.” - P978

Finally, students talked about using the solutions to verify their
own process. A few students talked about how this saved them
time by confirming they were on the right track. Others talked
about how seeing the solution could be incorporated into their
problem-solving process. P801 described their verification process:

‘... after asking the bot 5 to 6 questions, it does give me
an opportunity to check and see if my thought process
was indeed in the right direction. I would definitely say
that using the solution straight away would defeat the
purpose of such a learning platform.” - P801

Time pressure. Time constraints emerged as a recurring theme
in students’ decisions to view the solution. Participants cited tight
deadlines and competing priorities as reasons for bypassing ex-
ploratory learning and opting for the quickest path to completion:

‘T am submitting this lab quite late so I did not really
have time to completely rewrite and debug the code
myself so I clicked see solution. [However, without the
time pressure] I would genuinely give it a go before
wanting to peak at the see solution option.” - P277

Students also used it to save time or to avoid wheel spinning [3]:

“Tused the See Solution ... because I wasn’t sure how to do
‘boundary checks’ on indexed elements and I didn’t want
to spend too much time figuring out a way to do them.
For the first two questions, I didn’t use the see solution
feature as I fully understood what was required...” - P161

Lack of self-regulation skills. Some students quite candidly
talked about their lack of self-control when it came to using the
solution feature. Where some students described being tempted
when facing the time pressure of a deadline, others candidly talked
about their lack of self-regulation as a primary factor in their deci-
sion to use the feature. For example, P941 said, ‘T honestly just got
lazy, but when it was more straight forward I would not use [the ‘See
Solution”] feature.” Similarly, P181 stated ”don’t give us the option
to be lazy.” These admissions reflect gaps in self-control and in-
trinsic motivation, which are critical components of self-regulated
learning.

Curiosity. The final motivation shared by students was curiosity.
A few participants used the solution to assess its accuracy or to
compare their correct solution to the solution offered by the tool:
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“T used the see solution to see if it generated the correct
solution, as I was curious to what it would produce... it
was useful to show other ways to solve the code in an
efficent manner.” - P681

“T used the ‘see solution’ feature after I'd done the prob-
lem, simply to compare my solution with a model one.
I’d followed the advice of the Al bot so the solutions
looked pretty much the same.” - P975

Based on the log data, 8.4% (n=37) of the 440 students who used
the solution feature clicked the “See Solution” button for the first
time for one or more of the three problems after they had already
solved the problem correctly and passed all associated test cases.
This corroborates that a small subset of students used the feature out
of curiosity, to verify their work, or to explore alternative solutions
and further develop their problem-solving skills after they had
correctly solved the problem.

5 Discussion

Contrary to previous work where students expressed their desire to
independently arrive at a solution rather than being provided with
solutions directly from AI TAs [6], 50% of students in our study
used the “See Solution” feature (RQ1a., see Section 4.1.1). However,
this behavior aligns with student preferences for receiving answers
when working with human TAs [23]. Our work provides insight
into why students may elect to use such a feature.

Reported Benefits of Solutions. Based on our qualitative findings
and log data analysis, some students reported disabling guardrails
to help their learning rather than in order to copy solutions directly.
Some students reported exploring solutions to verify their work af-
ter completion, while others reported using it to explore alternative
solutions (RQ2., see Section 4.2).

Reported Concerns over Solutions. Some students felt they
used the solution feature because they lacked self-regulation and
self-control. This raises some concerns about over-reliance on the
feature, which aligns with recent work on GenAlI use [15, 43, 45].

Potential Impact on Learning. Students who performed worse
in the course were more likely to use the solution feature when
solving all three tasks in our study. Although we cannot determine
causality from this correlative study in a single lab of a course, it
seems likely that struggling students may have been more apt to
need to use the solution feature to solve the assignment than higher
performing students. Concerningly, if struggling students were
to become dependent on using solutions, it could cause an over-
reliance on the feature that might hinder learning [7, 15, 43, 47].

Student Procrastination The results of our study also confirm
that low-performing students are more likely to procrastinate, sim-
ilar to the findings of previous work [9, 21, 46]. However, empirical
log data from our observational study shows that the students’
decision to use the “See Solution” feature was independent of stu-
dent procrastination behavior (RQ1b., see Section 4.1.2). Qualitative
feedback from students indicated that time pressure contributed to
their decision to view the solution, mirroring patterns observed in
student interactions with human TAs [23, 44]. These mixed results
indicate that further research is needed to draw stronger conclu-
sions.
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Future Studies. Future research could extend this analysis across
a course term to draw stronger conclusions. If low-performing stu-
dents consistently rely on the solution feature over longer periods,
their interactions with systems that allow disabling guardrails could
serve as an indicator to identify at-risk students who may lack self-
regulation skills. Additionally, future research could explore the
relationship between effort exerted and solution-seeking behaviors
by conducting a more fine grained analysis on students’ code sub-
missions, chat prompts, and their interaction with “See Solution”
feature. Such work could also examine when AI TAs should grant
access to solutions, particularly when students remain stuck on a
problem for extended periods.

AI TA Design. Our findings may have implications for designers of
AITA tools. Students reported conflicting opinions about the use of
the “See Solution” feature with some reporting they used it to help
their learning and others believing it might hinder their learning.
Therefore, further evidence is needed to determine whether such a
feature can be helpful, specifically under what conditions and for
which students it can be helpful. For the students who use solutions
to aid their learning, there is a value to having an option in AI TAs
that provides students with the option to view alternate solutions,
particularly after they have solved the problem or when they are
assigned formative low-stakes practice problems. For the latter,
instructors could be given an an option to enable or disable such
features in tools that offer AI-TAs at a problem level.

Limitations. This study was conducted in one lab that occurred
late in an introductory programming course at a large research-
focused university. Findings may not generalize outside this context.
Additionally, student use of the “See Solution” feature may have
been influenced by the task problem statements and the lab’s design
that directed students to interact with a guardrailed AI TA. This
design choice might have affected students’ comfort level when
seeking help potentially leading them to use the “See Solution”
feature more frequently.

Furthermore, because the Al TA did not receive the problem
description as part of its prompt, students may have become frus-
trated with its limited understanding and less effective guidance.
Six percent of the students in the sample disagreed that the AI TA’s
responses were correct or helpful. This may have encouraged some
of these students to rely on the “See Solution” feature. Without
the AI TA having problem context, students had to write mean-
ingful prompts to receive effective help which was a deliberate
design choice we made as we wanted them to develop prompting
skills. Future studies could explore how refining task instructions
to encourage productive use of the AI TA and providing it with full
problem context might influence study outcomes, as well as assess
the accuracy and reliability of Al-generated feedback.

Another limitation is students’ access to the lab task for over a
week, which may have allowed them to consult external resources
such as ChatGPT or seek assistance from their peers. While it is hard
to determine how external influences affected student decisions,
the low stakes of the three programming tasks in the lab (10% of
lab grade or 0.1% of course grade) and the option to use the “See
Solution” button without penalty may have reduced the incentive
for misconduct. Future studies in controlled environments could
help isolate the effects of the intervention more clearly. However,
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our current study allowed us to scale the intervention to a larger
cohort of students than would not be feasible in a controlled setting.

6 Conclusion

In this study, we explore the behavior and motivations of stu-
dents learning programming when using an AI TA with optional
guardrails. Despite students reporting that they valued guardrails
on the AI TA to help their learning, many students elected to bypass
the guardrails when given the option. Students reported removing
these guardrails from the AI TA for reasons beyond directly copy-
ing solutions, such as assistance in problem solving or curiosity to
explore alternative solutions. We also found that low-performing
students were more likely to request solutions for every problem in
the lab assignment, and more likely to procrastinate and complete
the lab closer to the deadline. Our findings contribute to a broader
understanding of how students interact with Al tools in education
with implications for designing AI TAs that can support educational
goals and student motivations.
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